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Spatial extent of glacier
ecosystems is changing

Quantity of runoff is
changing as well




Box 2. The glacial and ice sheet biome

Figure | provides a description of the glacial and ice sheet biome that is similar to the descriptions used in undergraduate text books (e.g. [1)) to
describe terrestrial biomes. The description is based on location, annual temperature profile, biological activity and community composition
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Figure L. The icy biome features. Annual pattemns in temperature at the surface of the ice (a) and in a typical subglacial system (b) using the Russel glacier in
Kangeriussuaq, Greenland (63 N) as a model. (¢) Approximate global distribution of glaciers and ice sheets adapted from GLIMS project (Global Land ice Measurements
from Space) [72]. (d) Typical microbial community composition in glaciers and ice sheets. (e) Hypothetical annual biological activity for some key microbial processes.
The Greenland ice Sheet (point 660) near Kangerlussuaq i), cryoconite holes at the surface of the ice in Froys glader in Greenland (g) and typical aigal species
inhabiting the ice and cryoconite holes (h). (i) Typical valley glacier on the east coast of Greenland (near Zackenberg Station). Adapted from (73] (d). Photographs
reproduced, with permission, from Chris Bellas (f), Birgit Sattier ig and i) and Marian Yallop (h)
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Figure 2 | Organic carbon (OC) sources and carbon balance in the supraglacial environment. Small glaciers and ice sheet margins (left inset showing

a schematic of the ice surface) are more dynamic, receive more allochthonous OC and so are more likely to be CO, sources. Interiors of ice sheets (right
inset) are more stable and likely to develop net autotrophy (that is, CO, sink). a, Heterotrophic microorganisms use OC as their carbon source.

b, Photoautotrophic microorganisms fix CO, from the atmosphere and providing autochthonous OC for the system. ¢, Local allochthonous OC originates in
adjacent deglaciated areas. d, Distant allochthonous OC, often of anthropogenic origin, is deposited as atmospheric aerosols.

Stibal et al., 2012, Nature Geoscience




Subglacial
biogeochemistry

e Abundant microbial
communities at the
till/ice interface

Inputs from
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Processing of organic

material and nutrients
before export to rivers

Skidmore et al., 2000, App. Env. Microbiol.




Basal melt supply of water, OM, and nutrients

Channel marginal zone
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FiG. 9. Conceptual model of the relationship between hydraulic conditions at the glacier bed, the biogeochemical transfers that
take place, and the broad types of bacterial activity. In the channel marginal zone (CMZ), regular (diurnally fluctuating) exchanges
take place between pore waters in the till and channel waters otherwise in transit. “OM”™ is organic matter.

Hodson et al., 2008, Ecol. Monographs
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Fig. 10. Carbon flows through glacial food webs. “DOC” is dissolved organic carbon, “OM™ is organic matter, and
“Necromass™ refers to OM produced from in situ bacteria.

Hodson et al., 2008, Ecol. Monographs










What do we know?




Ecosystem Structure

) Ice surface
Ice lid Air b

Water On a global basis cryoconite holes
plecerie have the potential to fix as much as
64 Gg of carbon per year.

Most lakes and rivers are generally
considered as heterotrophic
systems, but our results suggest that
glaciers, which contain 75% of the
freshwater of the planet, are largely
autotrophic systems.
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Anesio et al., 2009, Global Change Biology
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Riverine Biodiversity
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Figure 3 | Local richness (a diversity) as a function of glacial cover. The
data shown are for species richness (Alaska) and family richness (Ecuador
and Alps). Local taxon richness peaks at 5-30% GCC. Data are indexed to
1, indicated by the horizontal dashed line, at non-glacial sites (0% glacial
cover). Each data point represents a river site and lines are Lowess fits.

Jacobsen et al., 2012, Nature Climate Change



Nutrient Export in Rivers
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Riverine Organic Matter

R?=0.84 R2=0.41
P<0.001 P<0.001

Protein-like fluorescence (%)

Glacier runoff strongly influences the
chemistry of downstream rivers

Fellman et al., unpublished



Carbon Age and Bioavailability
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Riverine Carbon Subsidy
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Anthropogenic Influence?

Snowpack Glacier outflow
5 25
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Glacier surface
OC age: 2,640- 0 years

Stubbins et al., 2012, Nature Geoscience




Glacier Organic C fluxes

DOC export = 12-18 kg C/ha/yr

(Laudon et al., 2004;
Kortelainen et al., 1997)




Glacier River Plumes
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Coastal Mixing of Riverine Fe and Marine Nitrate
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Fe Solubility by River Type
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Glaciers as a Contaminant Source

Blast from the Past: Melting
Glaciers as a Relevant Source for
Persistent Organic Pollutants
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Atmospheric models show Hg transport to

ENE

Average elemental mercury surface concentrations for July 2001 (ng/m3)

GRAHM (Global/Regional Atmospheric Heavy Metals Model) simulation —
Ashu Dastoor, Meteorological Service of Canada,Environment Canada




Glacial Monomethyl Hg export
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Runoff from glaciers is unique
amongst terrestrial ecosystems:

- bioavailable organic matter
- nutrients (P)

- micronutrients (Fe)

- contaminants (Hg)
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Future Impacts

Long term patternin
glacier export
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